Category: AstroPhysics

How do they determine Stellar distances?

How do they determine Stellar distances?

Just looking at stars in the night sky seems as if every star is equally far away. Feels like we are bound by some spherical ball with stars on the sphere. Any star seems to be as far as any other and this led the ancient Greeks to believe that all the stars were the same distance away. Distance is one of the most important and difficult parameters which has to be measured in Astronomy. Astronomers use some smart methods to measure stellar distances. These distances are really too huge to be determined using traditional methods as they are beyond the scale of any physical instrument we use.

People started to think about ways to measure stellar distances but there were no instruments before Galileo built a refracting telescope in 1609 which would aid in measuring distances with sufficient accuracy.

 

Here’s a list of methods used to measure Stellar distances:

  1. Parallax Method.
  2. Using Variable Stars.
  3. Using Colour of Stars.
  4. Using expansion of Universe.

 


 

Parallax Method

Parallax is definitely observed by everyone. When we look out the window of a car or train we see objects closer to us pass by rapidly as compared to objects far away from us. Objects very far away from train/car like mountains in-fact appear stationary. A driver looking at the speedometer observes speed as 80 kmph but at the same time a person looking at the speedometer observes the speed over 90 kmph. So we define parallax as difference between the apparent position of object viewed along two different lines of sight, and is measured by the angle or semi-angle of inclination between those two lines.

For stars, the distance between the two viewing points needs to be large, as they are so far away. The best we can do is to use the opposite sides of the Earth’s orbit (Annual Parallax). A photo of an area of sky is compared with one taken six months previously. Robert Hooke outlined in 1674 the problems of looking for annual motion of stars and Isaac Newton tried to calculate the distance of Sirius by comparing its brightness to that of the Sun. However, until the 19th century, telescopes were not sensitive enough to detect the very tiny parallax motions. The first person to succeed was F. W. Bessel who in 1838 measured the parallax angle of 61 Cygni .

There are two sub-types:

Annual Parallax : It is caused by the Earth’s yearly orbit around the sun. The measurements are taken 6 months apart i.e from two opposite points on the orbit.

Annual Parallax.
Image Credits: space.com

 

Geocentric or diurnal parallax : Our observations are made from the surface of the Earth, not its centre. This is irrelevant when observing distant objects such as stars. But for closer objects (e.g. within the Solar System), a correction must be made. This is geocentric parallax, or diurnal (daily) parallax
(since it varies daily as the Earth spins around its axis).

Diurnal Parallax.
Two observations can be made of same object from diametrically opposite points.

Here is an example of calculation of Parallax. If anyone’s interested in the detailed geometric treatment of parallax, this is a good reference.

Even with recent telescope technology, the smallest parallax angle measurable from Earth has been about 0.01″. Only approximately 3000 stars have been observed with a reasonable degree of accuracy. In order to improve this figure, ESA has launched a satellite designed specifically to measure the tiny angles involved to excellent accuracy. Parallaxes as small as 0.002″ are possible.

Hipparcos by ESA which was launched in 1989.

Named HIPPARCOS (HIgh Precision PARallax COllecting Satellite) in honour of the Greek astronomer Hipparchus , the satellite was put into orbit by the European Space Agency in 1989.

Astronomy Through The Ages.
Image Credits: ESA

 


 

Variable Stars

As the name suggests, variable stars are those whose brightness varies (fluctuates) as seen from earth. There are different reasons of why the brightness of these stars varies.

They are classified as:

  • Intrinsic Variables: Whose luminosity changes periodically. For eg. the star might shrink or swell up periodically.
  • Extrinsic Variables: Whose apparent change in brightness is due to the change in amount of light that reaches Earth, or the star might get eclipsed due to other companion or planetary system orbiting around it.

It does sound weird, that variable stars aid us in measuring huge distances.One particular type of variable star has proved invaluable for helping to determine the stellar distances. This is a type known as a Cepheid Variable.

So what are these Cepheid Variables? They are named Cepheid Variables because the first star of it kind (The Delta Cephei) was discovered in the constellation Cepheus. All stars, late in their lifetime, change from being average stars for their mass ( main sequence stars ) to becoming swollen red giants . Most stars change from the swollen red giant phase to pulsating variable stars before they finally die, all reactions ceasing. These are Cepheid Variables, which expand and contract, glowing brightly and fading every so often.

Cepheid Variables are very large, luminous, yellow stars. They change in brightness very regularly with periods of 1 to 70 days between peaks.

Extrinsic variables have variations in their brightness, as seen by terrestrial observers, due to some external source. One of the most common reasons for this is the presence of a binary companion star, so that the two together form a binary star. When seen from certain angles, one star may eclipse the other, causing a reduction in brightness.
Variation in Brightness due to Eclipsing.

So how is it that we determine distances using these type of stars? Well the answer is very smart. The important feature of a Cepheid Variable that allows it to be used for distance measurements is that its period is related directly to its luminosity . This relation allows us to work out how much brighter than the Sun the star is. From there we can calculate how much further away the star must be than the Sun to make it the brightness we see from Earth!!

Delta Cephei light curves, Magnitude vs Time.
Credits: ast.cam.ac.uk
Plot of magnitude difference against distance.
Credits: ast.cam.ac.uk

 


 

Colour of Stars

I don’t know how people sometimes claim they see a “reddish” star just by looking at it through naked eyes, but personally through naked eyes I see stars as white dots. But when you click a long exposure photo or see a star through Prism you can see that star’s do have different colours. By obtaining the spectrum using prism or diffraction grating and analysing it we can even determine the surface temperature of the star!!

The famous constellation of Orion. This long exposure photographs show colours of stars. On the top left we have red supergiant Betelgeuse and on the bottom right we have blue supergiant Rigel.
Credit & Copyright: Matthew Spinelli

Astronomers divide stars into seven types according to their spectrum: O,B,A,F,G,K,M. The order of these letters can be easily remembered by the mnemonic – Oh be a fine girl kiss me! O stars are the hottest (50 000 degrees C) and are blue. M stars are the coolest (3 000 degrees C) and are red.

Now we are able to determine the surface temperature of a star. So how is distance measured using this parameter? Well we use Stefan’s Law which relates the star’s surface temperature to its luminosity. Once we know the luminosity, the absolute magnitude (a measure of the total amount of light being given out by the star in all directions) can be found and so the distance. The absolute magnitude is directly related to the star’s luminosity and the apparent magnitude (brightness of a star as observed from here on Earth) can be measured here on Earth. From the Inverse Square Law , we can deduce an equation connecting the magnitudes and the star’s distance. This allows us to calculate the distance in parsecs if we can find the star’s apparent and absolute magnitudes.

Plot of Surface temperature vs Spectral Class.

 


 

Expansion of Universe

Edwin Hubble was an American astronomer who discovered that universe is expanding. Furthermore it’s not only expanding but further the object (galaxy/star) is the faster it is receding away from us. Now how can this be used to determine the distances?

For that we need to first determine how fast the object is moving. We use the Doppler Effect for this. For galaxies coming towards you, the light appears slightly blue. For galaxies going away, it appears slightly red. By looking at the spectrum of a galaxy, astronomers can work out exactly how much the light has been changed and so determine the speed of the galaxy away from the Earth.

The Doppler Effect.

Now that we have determined the speed, we can approximate the distance using the Hubble Graph. The slope of this graph is the Hubble’s constant.

Plot of Velocity vs Distance (Hubble Graph).

These are some methods astronomers use to determine distances which are beyond the scales of any measuring instrument. It’s just fascinating that we can determine such huge distances with an impressive accuracy.

What is a Lunar Eclipse?

What is a Lunar Eclipse?

There’s flood of images of blood moon on social media since 31st Jan. The popular term being used for the phenomenon is “Super Blue Blood Moon”.  That phenomenon was nothing but a Total Lunar Eclipse. Now we will understand what happens and how it happens. First of all lets understand what is a lunar eclipse and then we will discuss its types.

What is a Lunar Eclipse?

The most common definition we hear is, when the sun earth and moon are aligned in the same line/ when the moon enters the Earth’s shadow. That all is fine, but the most natural question that pops up in our mind is; then why doesn’t eclipse happen every month? As it takes about 27.3 days for one complete revolution around Earth shouldn’t the sun, moon and earth line up twice in a month which would lead to one total solar eclipse and one total lunar eclipse every month? But that doesn’t happen right? Eclipses doesn’t happen that often. Well that’s because the Moon’s orbital plane is inclined by about 5.1° to the ecliptic plane (the plane in which Earth orbits around sun). So Eclipses occur only when the moon passes through that exact point where these two planes coincide. And this doesn’t happen that often.

By Peter Sobchak - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35889221
The Moon’s orbital plane differs a little than the Earth’s orbital plane.

Types of Lunar Eclipses

Umbra – The region where no sunlight reaches.
Penumbra – Region where sunlight reaches partially.

Penumbral Lunar Eclipse

Penumbral Lunar Eclipse happens when the moon passes through the penumbra region of the Earth’s shadow. This type of eclipse is usually very hard to notice as there is only slight change in the brightness of moon.

Partial Lunar Eclipse

When part of the moon passes through Umbra we get a partial Lunar eclipse. It is easy to notice as there is significant drop in Moon’s brightness. It might happen once or twice in a year.

Total Lunar Eclipse

Now this is something which doesn’t happen quite often. Total Lunar Eclipse happens when the moon passes through the umbra i.e all the sunlight is blocked by Earth. This event happened recently on 31st January 2018.

The types of Eclipses. Image credits: Addison Wesley.

So what was so special about the Lunar eclipse of 31st January? And why was it called Super Blue Blood Moon? Lets understand it word by word.

Super moon

The moon’s orbit around earth is not exact circle, its an ellipse. So there must be two points; when the moon is farthest from Earth and when it is closest to Earth. The farthest point is called apogee (406,300 km) and closest point is called perigee (356,700 km). Super moon is when its a full moon at perigee and its called super moon because it looks a little bit bigger than usual.

Comparison of Moon at Apogee and Perigee.

Blue Moon

This has nothing to do with the colour blue. When two full moons appear in one month then the second full moon of the month is called a blue moon! There is a phrase “once in a blue moon” so its evident that this is something rare. Blue moon happens once in 2 to 3 years. And whats more rare is a double blue moon which is two months in a year which has two full moons each! And this happens 3-5 times in a century!! The last double blue moon happened in 1999 and next will happen in 2037!

Blood Moon

Blood moon sounds so surreal! When a total lunar eclipse occurs all the sunlight is blocked by earth and moon is in the umbra region. Now Earth has a thick layer of atmosphere. Rayleigh’s scattering of sunlight in atmosphere is what gives sky its blue colour. The atmosphere scatters blue light more efficiently than red light (In better terms, the scattering is inversely proportional to the fourth power of wavelength). So the Red light passes through the atmosphere without getting scattered and enters the umbra region onto the moon! That’s what gives the moon a reddish hue! Hence the name blood moon.

The atmosphere bends red light towards the umbra region.
Image credits: lovebigisland.com

Super Blue Blood Moon

Now what are the odds of super moon, blue moon and blood moon happening at the same time !! That’s why people were hyped for the Super Blue Blood Moon!!! I got to watch the eclipse and also clicked images at different stages of eclipse. The first image is when the totality occurred, the moon was visibly red even with naked eyes. And then gradually it turned white into a full moon! Isn’t it beautiful!?

Composite image of different stages of Total Lunar Eclipse.

The next Blue Blood Moon will happen on 31st December 2028 and the next Super Blue Blood Moon will happen on 31st January 2037! So if you missed this event you need to have a lot of patience.

What are shooting stars?

What are shooting stars?

Well shooting stars are not actually stars but space rocks that enter the Earth’s atmosphere at very high speeds. These space rocks are called meteoroids which are small rocky bodies in outer space floating around. They are smaller than asteroids and are not usually bigger than 1 meter in diameter. Meteoroids enter the Earths atmosphere at very high speeds, and compresses the air molecules in the upper atmosphere which heats up the air and meteoroid to very high temperatures. The meteoroid starts glowing and shedding matter which we see as a streak of glowing light in the night sky. It seems as if some star shot across the sky hence the name shooting star.

Most meteoroids come from the asteroid belt, having been perturbed by the gravitational influences of planets, but others are particles from comets, giving rise to meteor showers. Some meteoroids are fragments from bodies such as Mars or our moon, that have been thrown into space by an impact. Meteoroids enter the Earth’s atmosphere at speeds greater than 20km/s. In 2013, 1 meter-sized comet from the Oort cloud entered Earth atmosphere over a wide area in California and Nevada.It approached from the direction of the constellation Virgo, and collided head-on with Earth atmosphere at 72 ± 6 km/s!!! So in short, a meteoroid, small asteroid or small comet enters the Earth’s atmosphere, heats up and we see a glowing streak of light which is called meteor and if the rock is big enough that it survives and reaches the surface of Earth it is called a meteorite. Meteoroid-Meteor-Meteorite, same thing but different names for different phases.

 

Meteoroid is a space rock that is still in space. Meteor is a meteoroid that burns up in the earth’s atmosphere (Shooting Star) Meteorite is a meteoroid that hits the earth’s surface.

Its always exciting to watch a shooting star but its very rare as you need to go away from city and have clear skies. How about multiple shooting stars? It is possible if you plan on sky gazing when there’s a Meteor shower!  The Leonid meteor shower happens every year in November, when Earth’s orbit crosses the orbit of Comet Tempel-Tuttle. The comet makes its way around the sun every 33.3 years, leaving a trail of dust rubble in its wake. When Earth’s orbit crosses this trail of debris, pieces of the comet fall toward the planet’s surface. And we get to see many shooting stars, some might be faint but if you are lucky you might get to see a fireball! I went for sky-gazing during the peak days of Leonids meteor shower and I got lucky as I captured a shooting star while shooting images for timelapse!

 

Shooting star or Meteor ofLeonids Meteor Shower November 2017.

Can you see colours in the streak of light!? I was amazed to see the colours as they are of significance. The colours of the light emitted depends on the chemical composition and mineral layering of the meteoroid and also on superheated air. In the image we can see red, orange-yellow and violet hues.

  • Orange-yellow :-  Sodium
  • Yellow :- Iron
  • Blue-green :- Magnesium
  • Violet :- Calcium
  • Red :- Atmospheric Nitrogen and Oxygen

When the meteoroid or asteroid enters the Earth’s atmosphere they create ionization trail where the air molecules are ionized due to the path of meteor. These trails can last more than 30 minutes in few cases. Just as I captured the image of the meteor I was also able to capture the Ionization trail of this meteor!

Ionisation trail of Meteor from Leonid Meteor shower November 2017.

Watching a shooting star is kind of rare as it lasts for a very short duration and we need perfect weather conditions. So what’s the probability of getting hit by a meteorite? The only confirmed person in history to have been hit by a meteorite is Ann Hodges. On a clear afternoon in Sylacauga, Alabama in 1954, Ann was napping on her couch, covered by quilts, when a softball-size hunk of black rock broke through the ceiling, bounced off a radio, and hit her in the thigh, leaving a pineapple-shaped bruise. (Source: National Geographic)

 

Moody Jacobs shows a giant bruise on the side and hip of his patient, Ann Hodges, in 1954, after she was struck by a meteorite. CREDITS: PHOTOGRAPH BY JAY LEVITON, TIME & LIFE PICTURES/GETTY IMAGES