Tag: daily physics

What is Leidenfrost Effect?

What is Leidenfrost Effect?

Now this is something very cool we observe when water is put on a very hot surface. We can see little droplets bouncing around which should actually be evaporated instantly because of such high temperatures. This is due to a phenomenon called Leidenfrost Effect (named after Johann Gottlob Leidenfrost).

Leidenfrost Effect Droplet Schematic
Drop levitated due to layer of vapour. Image credits: By Vystrix Nexoth at the English Wikipedia, CC BY-SA 3.0, Link 

When liquid droplets come into contact with a hot surface (around boiling point temperatures) it evaporates almost immediately. If the temperature is high enough such that the layer of liquid drop which comes into contact with hot surface vaporises immediately then this layer of vapour acts like a cushion. This layer of vapour cushion prevents heat transfer to rest of the liquid droplet as steam has poorer thermal conductivity than the pan/hot surface. The steam cushion levitates the droplet and it skitters around without any friction and thus surviving for much longer times. This “high enough” temperature is called the Leidenfrost Temperature.

Circular Grooves Hold the droplet in the center.
The concentric edges hold the droplet in the center of the pan. Image credits: Martin Ristic.

For instance water has boiling temperature of 100° C. If we put water drops on a pan with temperature of 100°C the droplets will just hiss and spread out vaporising rapidly. But when the pan temperature reaches around 193°C, which is the Leidenfrost point for water, it levitates and skitters around.

So the Leidenfrost temperature is different for different liquids. There’s also something called as inverse Leidenfrost effect where hot liquid droplets are levitated on cold liquid surfaces as the liquid vaporises levitating the hot droplet. For example Anaïs Gauthier’s team at University of Twente have studied this effect by depositing a room temperature droplet of alcohol on top of pool of liquid nitrogen at – 196 degrees celcius.

There’s one application for which we can use this property of liquids. Water droplets just skitter around on a flat hot surface, but if we change the texture of the hot surface we can give a direction to the motion of droplet undergoing Leidefrost effect. If the texture if made of sharp steps at an angle / ratchet like texture , some vapour from below the droplet exits and propels the droplet.


This also allows the droplet to move uphill against gravity. This can be used to make Thermostats with no moving parts. Thermostat is a device which senses the temperature of a system and then can be used to control or regulate the temperature of the system. The Leidenfrost thermostat works by using the cooling power of water droplets. It moves the water droplets in one direction to cool the system when the temperature is too high, but discards the drops by moving them in the opposite direction when the temperature is too low, allowing the system to heat up to the correct temperature. This would be better understood by watching this video.

Published in the Journal of Heat Transfer, the thermostat is demonstrated in a short film made by undergraduate students:

Leidenfrost effect is also the explanation for some bizzare stunts some people perform without harming themselves like hitting a stream of molten metal or dipping wet finger in molten lead or blow out a mouthful of liquid nitrogen. The drastic temperature differences creates an heat insulating layer between the skin and materials for a very short duration.


What is Doppler Effect?

What is Doppler Effect?

Everyone has observed the phenomenon of Doppler Effect at some point. An ambulance coming towards you sounds a bit high pitched and then when it goes away from you it sounds a bit low pitched. So basically Doppler Effect is the change in frequency or wavelength due to the relative motion between source and observer. This phenomenon was named after the Austrian physicist, Christian Doppler, who proposed it in 1842 during his time at Prague Polytechnic University.

Doppler effect can be observed in sound waves as well as electromagnetic waves i.e light. The apparent change in wavelength/frequency due to the motion of source object is called as Doppler Effect. Consider a scenario where an observer is observing a moving object. If the object is moving towards the observer the wavelength is shorter due to the motion of source, and hence the frequency increases (higher pitched sound). Whereas if the object is moving away from observer the wavelength is longer as source is moving away from the observer and hence frequency decreases (lower pitched sound).

In case of light, if the object is moving towards you its called as blue shift because the wavelength reduces i.e it shifts towards blue side of the Electromagnetic Spectrum and if the object is moving away its called as red shift because the wavelength increases i.e it shifts towards red side of the Electromagnetic spectrum.

Note that blue shift and red shift doesn’t actually mean the object appears blue or red, it just means that frequency increases or decreases. A stellar object’s spectrum may be in ultraviolet region which is already beyond blue, in that case blue shift means the spectrum shifts towards the higher frequency range.

Red Shift and Blue Shift of Electromagnetic Spectrum of a Star.


Some applications of the Doppler Effect

  • Police radars make use of Doppler effect. The device is pointed at the target (vehicle), radio waves are emitted which hit the target and are reflected back. Depending on whether the vehicle is moving towards or away the change in wavelength is measured and instantly speed of the vehicle is calculated by the electronic circuits in the device. Such device is a good for non-intrusive way of traffic rule enforcement.
    Handheld Police Radar.
    Image Credits : stealthveil.com

  • Doppler Radars are used by Meteorologists to study the weather. Similar to Police radar it uses radio waves, they have large enough wavelength to interact with clouds and precipitation. This can be used to determine the speed of cloud and using other parameters like wind speed, temperature, air currents,etc the prediction of weather becomes more accurate.
    Doppler Radar at the National Weather Service in Dodge City, Kansas.

  • Doppler Echo-cardiogram is a device used to take images of heart. It uses sound waves which makes it relatively safe medical imaging technique. The sound waves bounce off the walls of heart and the red blood cells hence we obtain an image which helps determine the rate of blood flow and direction.
    Doppler Mitral Valve.
    Image : Wikipedia.

  • In Astronomy and Cosmology Doppler effect is used to determine if a stellar object is moving towards or away from us. It is also used to determine the distances of stellar objects. Click here to read more about determining stellar distances.
  • When a planet orbits a star, the star wobbles around the center of mass of the star planet system also called as barycenter (common center of mass for star and their planets). So the wobble means that the star moves away from us and towards us. That’s it! We can use Doppler Shift to detect exoplanets!!

Infact our sun also wobble mostly due to Jupiter.


Star Wobbles due to exoplanet.

To read more in detail about Doppler effect and also it’s mathematical formulation refer to this pdf.


Nobel Prize in Physics 2018

Nobel Prize in Physics 2018

Nobel Prize in Physics 2018. Image credits: nobelprize.org

The Nobel Prize in Physics was awarded to Arthur Ashkin, Gérard Mourou and Donna Strickland this year, with one half to Ashkin and other half jointly to Mourou and Strickland. The award honours the inventions in the field of laser physics. 

Arthur Ashkin was awarded the Nobel Prize for his invention of optical tweezers that grab particles, atoms and molecules with laser beam. Viruses, bacteria and other living cells can be held too without being damaged.

Gérard Mourou and Donna Strickland developed a technique to create high intensity ultra-short optical pulses. This technique has broad industrial and medical applications. 

Let’s first understand what optical tweezers mean,  its brief history and applications followed by ultrashort high intensity beams and its applications.

Optical Tweezers

Tweezers literally means some sort of instrument which is used to grab very small objects. Optical tweezers means light based method to grab something very small. Arthur Ashkin used laser beam to trap/grab/manipulate particles which are as small as atoms. Optical tweezers take advantage of ability of light to exert force, or radiation pressure.

Radiation pressure is the pressure exerted by light on matter. There’s an interesting video by Vsauce about radiation pressure click here to watch!

The idea that light could exert pressure was put forward by Johannes Kepler in 1619, who postulated that pressure of light explains why comet tails always point away from Sun. In 1873, James Clerk Maxwell showed theoretically that light can exert pressure, based on his theory of electromagnetism. In 1900s, the existence of radiation pressure was experimentally confirmed by Pyotr Lebedev, Ernest F. Nicholas and Gordan F. Hull. Radiation pressure is extraordinarily weak under everyday circumstances.

Lasers were invented in the year 1960 and soon after Ashkin began to experiment with it. In lasers light moves coherently, unlike ordinary white light in which the beams are mixed in all the colours of the rainbow and scattered in every direction. Ashkin did an experiment designed to look for particle motion from force due to radiation pressure of laser light on small particle. A sample of transparent latex spheres suspended in water was used to avoid any heating or radiometric forces. With just milliwatts of power, particle motion was observed in the direction of mildly focused Gaussian beam. However, an additional unanticipated force component was soon discovered that strongly pulled particles located in the fringes of the beam into the high intensity region on the beam axis. The understanding of the magnitude and properties of these two force components made it possible to devise the first stable three-dimensional optical trap for single neutral particles.

Image Credits: Optical trapping and manipulation of neutral particles using lasers.
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 4853–4860, May 1997

The trap consists of two opposing moderately diverging Gaussian beams focused at points A and B as shown in the figure above (Fig 1 (B))

The next advance in optical trapping and manipulation was the demonstration of the optical levitation trap in air, under conditions in which gravity plays a significant role. In the levitation trap, as shown in Fig.2, a single vertical beam confines a macroscopic particle at a point E where gravity and the upward scattering force balance. 

Image Credits: Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA Vol. 94, pp. 4853–4860, May 1997

Optical tweezers are now a widely used tool in biological physics and related areas, and continue to find new applications. The method is used for non-invasively trapping and manipulating objects such as single cells and organelles and for performing single-molecule force and motion measurements. The study of single molecules is made possible by linking them to “handles” that can be easily trapped with the tweezers, such as micron-sized polystyrene or silica beads. The beads also act as probes to monitor motion and force. It is also used to trap living bacteria. One important breakthrough was the ability to investigate the mechanical properties of molecular motors, large molecules that perform vital work inside cells. The first one to be mapped in detail using optical tweezers was a motor protein, kinesin, and its stepwise movement along microtubules, which are part of the cell’s skeleton. 

High Intensity Ultra-short Beams

Laser light is created through a chain reaction in which the particles of light, photons, generate even more photons. These can be emitted in pulses. Ever since lasers were invented, almost 60 years ago, researchers have endeavoured to create more intense pulses. However, by the mid-1980s, the end of the road had been reached. For short pulses it was no longer practically possible to increase the intensity of the light without destroying the amplifying material. 

CPA – Chirped Pulse Amplification

Strickland and Mourou’s new technique is known as Chirped Pulse Amplification (CPA). They took a short laser pulse, stretched it in time, amplified it and squeezed it together again. When a pulse is stretched in time, its peak power is much lower so it can be hugely amplified without damaging the amplifier. The pulse is then compressed in time, which means that more light is packed together within a tiny area of space – and the intensity of the pulse then increases dramatically. The CPA-technique invented by Strickland and Mourou revolutionised laser physics. It became standard for all later high-intensity lasers and a gateway to entirely new areas and applications in physics, chemistry and medicine.

Cutting materials using ultra short laser pulse.
Image Credits: assemblymag.com

There are some interesting applications of this. Things happen so quickly at the molecular and atomic levels that it was difficult to describe the process. Only before and after picture was possible to be described. But with pulses as short as a femtosecond, one million of a billionth of a second, it is possible to see events that previously appeared to be instantaneous. Ultra-sharp laser beams also make it possible to cut or drill holes in various materials extremely precisely – even in living matter. Many applications for these new laser techniques are waiting just around the corner – faster electronics, more effective solar cells, better catalysts, more powerful accelerators, new sources of energy, or designer pharmaceuticals.

To read the published papers click on the links below:

Arthur Ashkin 

Gérard Mourou and Donna Strickland